首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   7篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
2.
The planktonic marine diatom Skeletonema marinoi forms resting stages, which can survive for decades buried in aphotic, anoxic sediments and resume growth when re-exposed to light, oxygen, and nutrients. The mechanisms by which they maintain cell viability during dormancy are poorly known. Here, we investigated cell-specific nitrogen (N) and carbon (C) assimilation and survival rate in resting stages of three S. marinoi strains. Resting stages were incubated with stable isotopes of dissolved inorganic N (DIN), in the form of 15N-ammonium (NH4+) or -nitrate (NO3) and dissolved inorganic C (DIC) as 13C-bicarbonate (HCO3) under dark and anoxic conditions for 2 months. Particulate C and N concentration remained close to the Redfield ratio (6.6) during the experiment, indicating viable diatoms. However, survival varied between <0.1% and 47.6% among the three different S. marinoi strains, and overall survival was higher when NO3 was available. One strain did not survive in the NH4+ treatment. Using secondary ion mass spectrometry (SIMS), we quantified assimilation of labeled DIC and DIN from the ambient environment within the resting stages. Dark fixation of DIC was insignificant across all strains. Significant assimilation of 15N-NO3 and 15N-NH4+ occurred in all S. marinoi strains at rates that would double the nitrogenous biomass over 77–380 years depending on strain and treatment. Hence, resting stages of S. marinoi assimilate N from the ambient environment at slow rates during darkness and anoxia. This activity may explain their well-documented long survival and swift resumption of vegetative growth after dormancy in dark and anoxic sediments.  相似文献   
3.
uPAR is a cellular receptor for urokinase plasminogen activator, an enzyme involved in extracellular matrix degradation during processes involving tissue remodeling. We have expressed a recombinant soluble form of murine uPAR and raised rabbit polyclonal antibodies to study the expression of uPAR by immunohistochemistry. The immunohistochemical localization of uPAR was determined in normal mouse organs and in tumors formed by the highly metastatic Lewis lung carcinoma. uPAR immunoreactivity was found in the lungs, kidneys, and spleen, and in endothelial cells in the uterus, urinary bladder, thymus, heart, liver, and testis. No uPAR immunoreactivity was detected in muscle. In general, strong uPAR immunoreactivity was observed in organs undergoing extensive tissue remodeling, as exemplified by trophoblast cells in placenta, and in migrating, but not resting, keratinocytes at the edge of incisional wounds. Staining was not detected in any tissue sections derived from uPAR-deficient mice, thus confirming the specificity of the immunohistochemical staining of uPAR in normal mouse tissues. In Lewis lung carcinoma, uPAR immunoreactivity was found in the tumor cells of the primary tumor and in lung metastases. (J Histochem Cytochem 49:237-246, 2001)  相似文献   
4.
Gap junctions allow direct intercellular coupling between many cells including those in the vascular wall. Studies of connexin expression in cells of the microcirculatory system are very few in number. However, cell-to-cell communication between cells of the arteriolar wall may be particularly important in microcirculatory control. We investigated the expression of connexins 43, 40, and 37 (Cx43, Cx40, Cx37) mRNA and proteins in primary cultures of smooth muscle cells (SMC) from rat renal preglomerular arterioles and in the aortic cell line A7r5. Furthermore protein expression in preglomerular arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern of connexin protein in the cell culture and frozen sections corresponded to the mRNA expression. The data show that A7r5 and preglomerular SMC express mRNA for Cx37 in addition to Cx43 and Cx40. In A7r5 cells the mRNA for Cx43, Cx40, and Cx37 are translated to protein, whereas cultured preglomerular SMC and the media of afferent arterioles in frozen sections only showed Cx40 immunoreactivity.  相似文献   
5.
6.
We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with 15N2, Aphanizomenon spp. showed a strong 15N-enrichment implying substantial 15N2-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of 15NH4+ from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4+ fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nm) as compared with N2-fixation within colonies. No N2-fixation was detected in autotrophic microorganisms <5 μm, which relied on NH4+ uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N2 as NH4+. However, NH4+ did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of ~5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N2 as NH4+, which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought.  相似文献   
7.
The use of protein fusion tag technology greatly facilitates detection, expression and purification of recombinant proteins, and the demands for new and more effective systems are therefore expanding. We have used a soluble truncated form of the third domain of the urokinase receptor as a convenient C-terminal fusion partner for various recombinant extracellular human proteins used in basic cancer research. The stability of this cystein-rich domain, which structure adopts a three-finger fold, provides an important asset for its applicability as a fusion tag for expression of recombinant proteins. Up to 20mg of intact fusion protein were expressed by stably transfected Drosophila S2 cells per liter of culture using this strategy. Purification of these secreted fusion proteins from the conditioned serum free medium of S2 cells was accompanied by an efficient one-step immunoaffinity chromatography procedure using the immobilized anti-uPAR monoclonal antibody R2. An optional enterokinase cleavage site is included between the various recombinant proteins and the linker region of the tag, which enables generation of highly pure preparations of tag-free recombinant proteins. Using this system we successfully produced soluble and intact recombinant forms of extracellular proteins such as CD59, C4.4A and vitronectin, as well as a number of truncated domain constructs of these proteins. In conclusion, the present tagging system offers a convenient general method for the robust expression and efficient purification of a variety of recombinant proteins.  相似文献   
8.
The ability to degrade the extracellular matrix by controlled proteolysis is an important property of malignant cancer cells, which enables them to invade the surrounding tissue and to gain access to the circulation by intravasation. One proteolytic system thought to be involved in these processes is urokinase-mediated plasminogen activation. Expression of a glycolipid-anchored receptor for urokinase-type plasminogen activator (uPA) targets this system to the cell surface. This receptor (uPAR) is composed of three homologous modules belonging to the Ly-6/uPAR/alpha-neurotoxin protein domain family. Integrity of the three-domain structure of uPAR is required for maintenance of its sub-nanomolar affinity for uPA, but the functional epitope for this interaction is primarily located in uPAR domain I. Using affinity maturation by combinatorial chemistry, we have recently identified a potent 9-mer peptide antagonist of the uPA-uPAR interaction having a high affinity for uPAR (K(d)< 1 nM). Photoaffinity labelling suggests that this peptide interacts with a composite binding site in uPAR involving both domains I and III. When tested in a chicken chorioallantoic membrane assay that was developed to quantify intravasation of human cells, this antagonist was able to reduce the intravasation of HEp-3 cancer cells by approx. 60%.  相似文献   
9.
Mechanisms and rates of bacterial colonization of sinking aggregates   总被引:3,自引:0,他引:3  
Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling frequency, and turn angles) and the hydrodynamic environment (stationary versus sinking aggregates). We then experimentally tested the models with 10 strains of bacteria isolated from marine particles: two strains were nonmotile; the rest were swimming at 20 to 60 microm s(-1) with different tumbling frequency (0 to 2 s(-1)). The rates at which these bacteria colonized artificial aggregates (stationary and sinking) largely agreed with model predictions. We report several findings. (i) Motile bacteria rapidly colonize aggregates, whereas nonmotile bacteria do not. (ii) Flow enhances colonization rates. (iii) Tumbling strains colonize aggregates enriched with organic substrates faster than unenriched aggregates, while a nontumbling strain did not. (iv) Once on the aggregates, the bacteria may detach and typical residence time is about 3 h. Thus, there is a rapid exchange between attached and free bacteria. (v) With the motility patterns observed, freely swimming bacteria will encounter an aggregate in <1 day at typical upper-ocean aggregate concentrations. This is faster than even starving bacteria burn up their reserves, and bacteria may therefore rely solely on aggregates for food. (vi) The net result of colonization and detachment leads to a predicted equilibrium abundance of attached bacteria as a function of aggregate size, which is markedly different from field observations. This discrepancy suggests that inter- and intraspecific interactions among bacteria and between bacteria and their predators may be more important than colonization in governing the population dynamics of bacteria on natural aggregates.  相似文献   
10.
The high-affinity interaction between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays an important role in pericellular plasminogen activation. Since proteolytic degradation of the extracellular matrix has an established role in tumor invasion and metastasis, the uPA-uPAR interaction represents a potential target for therapeutic intervention. By affinity maturation using combinatorial chemistry we have now developed and characterized a 9-mer, linear peptide antagonist of the uPA-uPAR interaction demonstrating specific, high-affinity binding to human uPAR (K(d) approximately 0.4 nM). Studies by surface plasmon resonance reveal that the off-rate for this receptor-peptide complex is comparable to that measured for the natural protein ligand, uPA. The functional epitope on human uPAR for this antagonist has been delineated by site-directed mutagenesis, and its assignment to loop 3 of uPAR domain III (Met(246), His(249), His(251), and Phe(256)) corroborates data previously obtained by photoaffinity labeling and provides a molecular explanation for the extreme selectivity observed for the antagonist toward human compared to mouse, monkey, and hamster uPAR. When human HEp-3 cancer cells were inoculated in the presence of this peptide antagonist, a specific inhibition of cancer cell intravasation was observed in a chicken chorioallantoic membrane assay. These data imply that design of small organic molecules mimicking the binding determinants of this 9-mer peptide antagonist may have a potential application in combination therapy for certain types of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号